Welcome!

Web Performance is a Journey, Not a Destination

Mehdi Daoudi

Subscribe to Mehdi Daoudi: eMailAlertsEmail Alerts
Get Mehdi Daoudi via: homepageHomepage mobileMobile rssRSS facebookFacebook twitterTwitter linkedinLinkedIn


Blog Feed Post

Messaging Protocol for Internet of Things: MQTT

There are billions of smart devices in our world today, but what if these devices were interconnected? What if these devices can interact with each other just like how their owners do and form a kind of global nervous system? This essentially describes what people call the Internet of Things or IoT. IoT has revolutionized the IT world and the way in which we innovate. Everything from performance to security must be considered when delving into IoT.

Message Queueing Telemetry Transport Protocol (MQTT)

MQTT is a publish/subscribe-based lightweight messaging protocol for Machine to Machine (M2M) communication, on top of the TCP/IP protocol. The protocol provides telemetry technology, and MQTT developers are working to connect the evolving internet world, which is expected to produce even more diverse smart devices. The first version of the MQTT protocol was authored by Stanford-Clark, IBM, and Arlen Nipper.

Why MQTT?

MQTT has been used by Facebook for their messenger application, which needed a persistent connection to their servers without killing battery life. It requires a low network bandwidth and has a small code footprint. It transmits data over widely distributed and sometimes intermittent networks. These features translate as advantages for remote devices with little memory and processing power.

Other notable features of MQTT are:

  • It’s open source, royalty free and therefore easy to adopt and adapt
  • It follows a publish/subscribe model for one-to-many distribution
  • Small message headers
  • Multiple Quality of Service levels
  • Simple command messages
  • Data type agnostic
  • Retained messages
  • Clean sessions and durable connections
  • Last Will and Testament (LWT)

 

MQTT vs. HTTP

MQTT HTTP
Design Data-centric Document-centric
Model Publish/Subscribe Request/Response
Complexity Simple commands Complex
Message Size Small headers with a compact binary header size of 2 bytes Larger because headers are in text format
Service Levels 3 QoS Levels Same service level for all messages
Distribution One-to-many One-to-one

 

An example of an MQTT topology:

 

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 631px) 100vw, 631px" />

 

Quality of Service Levels

QoS value decides on how each message will be delivered, and it is a mandatory value to be set for every message sent.

QoS 0 (at most one message delivery)

When a QoS value of 0 is set for a message, a response is not expected, and there are no retry rules defined. A message arrives at the broker either once or not at all. A QoS 0 message is lost if the client is disconnected or if the server fails. A retry is not attempted by the MQTT layer. From a performance point of view, this is the fastest way to send a message using MQTT. Only the MQTT command PUBLISH is used here, and no other commands flow for a QoS 0 message.

 

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 522px) 100vw, 522px" />

 

QoS 1 (at least one message delivery)

The MQTT client or server would attempt delivering the message at least once, but there are possibilities of duplicate messages. When the broker receives the message, acknowledgment PUBACK is sent. In the event of no PUBACK received, the sender sends the message again with a DUP (duplicate) bit set. On receiving a message with the DUP bit set, the broker republishes the message to all its subscribers and sends another PUBACK message. This way MQTT persistence can be achieved. When a PUBLISH happens, the message is stored in the persistence layer such as a disk and removed when a PUBACK is received. A message with QoS 1 has a message ID in the message header.

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 555px) 100vw, 555px" />

QoS 2 (exactly one message delivery)

Additional flows to QoS 1 ensure that the message is delivered exactly once. The message is sent in the PUBLISH flow and the message is stored in the persistence layer by the client. A PUBREC message is sent as the response to PUBLISH. Meanwhile, the message is locked on the server. On receiving PUBREC, a PUBREL is sent to the server. On receiving PUBREL, the broker sends the messages, sends back a PUBCOMP and discards the stored state. A message with QoS 2 will have a message ID in the message header.

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 536px) 100vw, 536px" />

 

Security in MQTT

MQTT aims at a lightweight communication for the internet of things, but security comes at a cost regarding processor utilization and communication overhead. This is a reason as to why in the protocol there are only a few security mechanisms available. But many MQTT implementations have security standards like SSL/TLS is used.

Security in MQTT is divided into multiple layers.

Network Level: Using a physically secure network or VPN for communication provides a secure connection.

Transport Level: TLS/SSL can be used for transport encryption that ensures communication is encrypted and identity is authenticated.

Application Level: The protocol has Client ID, Username/Password credentials which can bring about device authentication. Another way is to have payload encryption without having an extensive transport encryption.

 

MQTT in Action

Home Monitoring Solution

A classic example for an MQTT-based application would be a home monitoring system. For example, the current temperature of a room heater is sent to a device on request.

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 640px) 100vw, 640px" />

Like any other application when there is communication between two applications/devices there is room for failures, and it is very important to monitor the applications to ensure efficient functioning of the application and good user experience.

Catchpoint can now monitor the performance and availability of IoT devices using the MQTT protocol. The MQTT test can be used to publish/subscribe communications over MQTT by publishing and subscribing to message for a specified topic and measuring how long it takes.

 

http://blog.catchpoint.com/wp-content/uploads/2017/05/Screen-Shot-2017-0... 300w" sizes="(max-width: 672px) 100vw, 672px" />

In an upcoming blog, we will look under the hood of MQTT protocol as seen by Wireshark. This will help us understand the communication between an MQTT client and MQTT broker.

The post Messaging Protocol for Internet of Things: MQTT appeared first on Catchpoint's Blog - Web Performance Monitoring.

Read the original blog entry...

More Stories By Mehdi Daoudi

Catchpoint radically transforms the way businesses manage, monitor, and test the performance of online applications. Truly understand and improve user experience with clear visibility into complex, distributed online systems.

Founded in 2008 by four DoubleClick / Google executives with a passion for speed, reliability and overall better online experiences, Catchpoint has now become the most innovative provider of web performance testing and monitoring solutions. We are a team with expertise in designing, building, operating, scaling and monitoring highly transactional Internet services used by thousands of companies and impacting the experience of millions of users. Catchpoint is funded by top-tier venture capital firm, Battery Ventures, which has invested in category leaders such as Akamai, Omniture (Adobe Systems), Optimizely, Tealium, BazaarVoice, Marketo and many more.